Inovação
Agricultura espacial: como tomates marcianos e batata-doce na Lua podem ajudar na produção mundial de alimentos
Brasileira é destaque com estudo que cultivou tomates em solo de Marte; pesquisadores buscam recursos para projeto sobre agricultura espacial
Fernanda Farias | Porto Alegre | fernanda.farias@estadao.com
12/09/2024 - 08:00
O espaço sideral, Marte, a Lua e a agricultura aqui na Terra estão mais ligados do que os seres humanos comuns imaginam. A agricultura espacial é um dos projetos da Agência Espacial dos Estados Unidos (NASA) do qual o Brasil faz parte, por meio do acordo de Artemis – que visa explorar com objetivos pacíficos e com a instalação de bases por longos períodos.
Desde que o Brasil tornou-se um dos 43 países signatários do acordo, em 2021, pesquisadores da Empresa Brasileira de Pesquisa Agropecuária (Embrapa) e de diversas organizações, instituições de pesquisas e universidades estão engajados com os estudos para produzir alimentos no espaço.
Assim como milhares de tecnologias espaciais que são usadas no dia a dia na Terra (uma ferramenta sem fio ou o termômetro infravermelho usado durante a pandemia), as tecnologias de plantio no espaço para fornecer alimentos aos astronautas também podem ser aplicadas aqui.
“O mais importante é que sejam mais eficientes no uso de água e energia, porque são fatores importantes e caros no espaço e aqui na Terra também”, afirma ao Agro Estadão a pesquisadora da Embrapa Pecuária Sudeste, Alessandra Fávero, que também é coordenadora da Rede Space Farming Brazil, que reúne as instituições de pesquisa.
Em julho, foi assinado o acordo de cooperação técnica entre a Embrapa e a Agência Espacial Brasileira (AEB) e, agora, a fase é de busca de recursos para a pesquisa que deve durar cinco anos.
“A ideia é que o governo federal entre com alguma coisa [de recursos], estamos tentando também agências de fomento estaduais. Atualmente, imaginamos que sejam necessários entre R$ 10 milhões e R$ 20 milhões, mas a rede vai crescendo”, conta a pesquisadora.
Alimentos escolhidos para o cultivo no espaço: batata-doce e grão-de-bico
A coordenadora da pesquisa conta que os dois alimentos escolhidos para os testes levaram em consideração critérios técnicos, genéticos e de produção, além do valor nutritivo.
A batata-doce produz raízes ricas em carboidratos, que é uma base alimentar, e cujas folhas são ricas em proteínas e fibras e podem servir como salada. Além disso, a espécie roxa tem o antioxidante antocianina, que protege da radiação a planta e quem a consome. “Praticamente não tem resíduos e a batata-doce é rústica, bem tolerante à pouca água”, explica Fávero.
O grão-de-bico é rico em triptofano, que é um precursor da serotonina, e tem proteína. “A gente acaba fazendo aquela dobradinha do arroz e feijão, carboidrato e proteína, com a batata e o grão-de-bico. E ele é extremamente versátil, o que em situação de astronautas de diversos países, é interessante porque é um alimento que agrada a todos”, comenta a pesquisadora.
Como as descobertas com agricultura espacial podem ser aplicadas na Terra
A coordenadora da Rede Space Farming Brazil conta que as pesquisas para cultivo no espaço são feitas em ambientes totalmente fechados. Essa situação de ambiente fechado é encontrada na Terra nas fazendas verticais, sendo que a maior delas está em Dubai, que é um lugar desértico.
O método a ser usado na pesquisa é a “aeroponia”, quando as raízes da planta ficam no ar e a água é injetada nas raízes. “Você economiza 95% de água em relação ao cultivo comum. E a água é usada, é reciclada e usada novamente. A ideia é fazer um sistema biosustentável”, conta Fávero.
“Se conseguirmos produzir alimentos em situações desafiadoras, conseguimos por exemplo no nordeste brasileiro, onde há locais em desertificação; em locais passíveis de alagamento; ou onde se queira proteger a vegetação”, explica a pesquisadora.
O que os tomates marcianos ensinam sobre produtividade e recuperação do solo?
A coordenadora da Rede diz que, a médio e longo prazo, as pesquisas também poderão ser feitas com regolitos – o solo desenvolvido pela NASA a partir de características do solo de Marte, ou seja, compacto e sem nutrientes.
Essa etapa iria utilizar dados de uma pesquisa inédita feita por uma das integrantes da Rede para o curso de mestrado na Wageningen University, na Holanda. A astrobióloga brasileira Rebeca Gonçalves é a primeira pessoa do mundo a aplicar o método de policultura no âmbito da agricultura espacial.
Ela cultivou tomates, ervilhas e cenouras no solo marciano – ou melhor no regolito. “Simulamos o mínimo do mínimo e uma condição de déficit hídrico”, conta Rebeca Gonçalves ao Agro Estadão.
A pesquisadora explica que, para iniciar o cultivo, o solo recebeu uma solução de nutrientes (NPK): nitrogênio, fósforo e potássio. “Essa mistura de macronutrientes era aplicada uma vez por semana e, diariamente, eram adicionados 200 ml de água. Além disso, foi introduzida uma única vez a bactéria rhisobia”, explica.
Em uma mesa de seis metros foram plantados cinco grupos, com diferentes combinações entre as espécies e formas de cultivo, com uma única cultura ou mais. Três tipos de solos foram testados: areia, orgânico terrestre e o solo de Marte (regolito).
“Uma das principais conclusões foi que os tomates amadureceram mais cedo no solo marciano e renderam duas vezes mais quando produzidos em policultura, ou seja, com cenouras e ervilhas”, conta a especialista.
Segundo ela, tomate e ervilha produziram mais na areia em policultura; no solo orgânico terrestre, as ervilhas se destacaram; enquanto a cenoura não gostou de nenhum solo na policultura. “Elas são uma espécie mais fraca em termos de competitividade [de nutrientes com outras plantas], resume Gonçalves.
A escolha dos alimentos e como eles se desenvolveram na agricultura espacial
Cenoura, ervilha e tomate estão em uma lista feita pela Nasa que especifica as 30 espécies possíveis para serem cultivadas em Marte, no caso de uma colonização do planeta. A escolha dos três para o experimento não foi por acaso, mas sim, levou em conta as características biológicas de cada um para que a policultura se desenvolvesse.
A ervilha, em combinação com a bactéria rhisobia, serve para fixar o nitrogênio no solo. A pesquisadora explica que a ervilha dá comida para a bactéria se desenvolver e fornecer o nitrogênio. O tomate tem uma substância na raiz que ajuda a bactéria da ervilha a se proliferar e também faz sombra na cenoura, que serve para deixar mais oxigênio entrar dentro do solo, por ser uma raiz.
“É quase como se a ervilha produzisse o fertilizante do sistema”, afirma a especialista. Além disso, as três espécies juntas alimentam o solo ao morrerem com os nutrientes necessários para os próximos cultivos.
Conclusões da pesquisa com solo marciano
O cultivo foi realizado em um ambiente controlado de temperatura, gases, oxigênio e gás carbônico, a exemplo de como seria em Marte, já que o planeta tem baixas temperaturas (-65ºC).
Além de conseguir produzir alimentos em um ambiente que recria as condições de Marte, a pesquisa mostra que é possível recuperar áreas agrícolas degradadas por mudanças climáticas. Isso porque com o manejo adequado, o solo marciano infértil acabou se tornando produtivo. Gonçalves salienta que o custo é quase zero, já que os macronutrientes usados são comuns e de fácil acesso.
O objetivo final, segundo a astrobiólogia, foi alcançado. O estudo formou um sistema bioregenerativo, fechado, autossuficiente e autosustentável. “Isso pode ser aplicado em comunidades rurais e ajudar no combate à fome e à insegurança alimentar. Pode ser aplicado em parques, no meio urbano e economizar no transporte, que conta com 6% da pegada de carbono no mundo”, conclui.
Siga o Agro Estadão no Google News e fique bem informado sobre as notícias do campo.
Siga o Agro Estadão no Google News, WhatsApp, Instagram, Facebook ou assine nossa Newsletter
Newsletter
Acorde
bem informado
com as
notícias do campo
Mais lidas de Inovação
1
Sistema Antecipe aumenta produtividade do milho safrinha em 287% no Tocantins
2
Como a Inteligência Artificial tem ajudado o produtor a ganhar mais
3
Aplicativo simula espalhamento de febre aftosa no RS
4
Embrapa desenvolve novas cultivares de porta-enxertos de maracujá resistentes à fusariose
5
CES 2025: John Deere escala tecnologia e lança novas máquinas autônomas
PUBLICIDADE
Notícias Relacionadas
Inovação
100 mil hectares de soja na palma da mão: como uma fazenda no interior do Piauí mudou a produção com conectividade
Cooperativas são peça importante para ampliar conectividade; mercado de máquinas vê nicho de '"máquinas inteligentes" como promissor
Inovação
CES 2025: John Deere escala tecnologia e lança novas máquinas autônomas
Com inteligência artificial e visão computacional, novos equipamentos prometem mais eficiência, sustentabilidade e produtividade no campo
Inovação
Como a Inteligência Artificial tem ajudado o produtor a ganhar mais
Fazendas da Sierentz têm adotado Inteligência Artificial e testes respondem quem acerta mais: IA ou agrônomos?
Inovação
Embrapa desenvolve novas cultivares de porta-enxertos de maracujá resistentes à fusariose
BRS Terra Nova e BRS Terra Boa foram validadas no norte de Mato Grosso, onde a fusariose devastou os pés de maracujá a partir de 2008
Inovação
Aplicativo simula espalhamento de febre aftosa no RS
Análises fornecem subsídios para Serviço de Vigilância decidir o protocolo mais adequado para contenção viral
Inovação
Sistema Antecipe aumenta produtividade do milho safrinha em 287% no Tocantins
Tecnologia da Embrapa reduz risco em caso de janelas curtas de plantio de milho segunda safra
Inovação
Nova fronteira tecnológica do Agro: como a computação quântica pode ajudar?
Embrapa faz primeiro trabalho sobre computação quântica voltado para agropecuária brasileira
Inovação
John Deere investe R$ 180 milhões em centro de pesquisa no Brasil
Inaugurado em Indaiatuba, (SP), unidade é a primeira do mundo com foco na agricultura tropical